FACULTAI	FACULTAD: ESCUELA: DEPAR				
Ingeni	ería	Ingeniería Elé	ctrica	Potenc	ia
ASIGNATURA: CÓ					PAG.: 1
	Electrór	nica de Potencia II		2229	DE: 5
REQUISITO	UNIDADES:				
	Electrón	ica de Potencia I (22	219) + 150 Unidades		4
		НО	RAS		
					TOTALES DE
TEORÍA	PRÁCTICA	TRAB. SUPERV.	LABORATORIO	SEMINARIO	ESTUDIO
3	1				

PROPÓSITO

Proporcionar una base sólida de la Electrónica de Potencia utilizada en la industria, haciendo énfasis en los principios fundamentales de la conversión de energía eléctrica, empleando dispositivos y circuitos de estado sólido, bajo un sistema de control generalizado. Se analizan las características de los convertidores estáticos de potencia, "choppers" e inversores, actuando con la carga en varias aplicaciones. Se introduce en la formación, técnicas y análisis de diseño asistido por computadores, mediante la simulación con programas de uso generalizado (ATP, PSPICE o MATLAB-SIMULINK) del convertidor de potencia propiamente dicho con diferentes aplicaciones.

OBJETIVO GENERAL

Analizar dos de las topologías básicas de los convertidores estáticos de potencia, "choppers" e Inversores, y el suministro de potencia a las cargas.

OBJETIVOS TERMINALES

- **1-** Establecer la necesidad de transformación de la energía mediante los convertidores estáticos de potencia.
- **2-** Familiarizarse con las características estáticas y dinámicas de los principales dispositivos semiconductores de potencia actualizados.
- 3- Realizar el análisis de circuitos básicos, con modelos idealizados de los dispositivos semiconductores.
- **4-** Analizar el comportamiento de los convertidores estáticos de potencia DC-DC dados por los "choppers" o pulsadores.
- **5-** Analizar el comportamiento de los convertidores estáticos de potencia DC-AC dados por los inversores.
- **6-** Especificar los componentes semiconductores que conformarían al convertidor estático de potencia.
- 7- Seleccionar el convertidor estático de potencia más adecuado según requerimientos de cargas.
- **8-** Implementar técnicas y análisis de los "choppers" e inversores con programas asistidos por computadora.
- **9-** Sensibilizar sobre el problema de armónicos en la red, proveniente de las cargas no lineales dadas por los convertidores estáticos de potencia.

OBJETIVOS ESPECÍFICOS

- **1-** Familiarizarse.
- **2-** Analizar.

Fecha Emisión:		Nro. Em	nisión:	Período Vigente:	Ultimo Período:
Enero 2003			2^{da}	Mayo/1994	
Profesor:	Jefe D	pto.:	Director:	Aprob. Cons. Escuela:	Aprob. Cons. Facul.:
Carmen Pahmer	Celso	Fortoul	Eugenio Tremamunno	Mayo/1994	Mayo/1994

FACULTAI):	ESCUELA: D			NTO:
Ingeni	Ingeniería Eléctrica				ia
ASIGNATURA:				CÓDIGO:	PAG.: 2
	Electrór	nica de Potencia II		2229	DE: 5
REQUISITO	UNIDADES:				
	Electrón	ica de Potencia I (22	219) + 150 Unidades		4
		НО	RAS		
					TOTALES DE
TEORÍA	PRÁCTICA	TRAB. SUPERV.	LABORATORIO	SEMINARIO	ESTUDIO
3	1				

- **3-** Analizar el comportamiento de los convertidores estáticos de potencia DC/DC dados por los "choppers".
 - 3.1- Obtener formas de onda de tensión y corriente en la carga.
 - 3.2- Especificar dispositivos de potencia que conforman el chopper.
 - 3.3- Calcular las expresiones que relacionan las tensiones y corrientes entre la salida y la fuente.
 - 3.4- Realizar balance de potencia.
- **4-** Analizar el comportamiento de los convertidores estáticos de potencia DC/AC dados por los inversores.
 - 4.1- Obtener las formas de onda de la tensión y corriente de carga.
 - 4.2- Especificar los dispositivos de potencia que conforman el inversor.
 - 4.3- Calcular las expresiones de las variables de tensión y corriente en la carga.
 - 4.4- Realizar un balance de potencia.
 - 4.5- Evaluar la contaminación por armónicos que produce el inversor a la carga.
- 5- Seleccionar el convertidor estático de potencia más adecuado según requerimientos de carga.

CONTENIDO

A- PROGRAMA SINÓPTICO

Generalidades. Circuitos básicos con tiristores y diodos. Convertidores DC/DC – "choppers" o pulsadores. Convertidores DC/AC – Inversores. Aplicaciones.

B- PROGRAMA DETALLADO

TEMA 1. Generalidades

- Generalidades sobre la electrónica de potencia.
- Componentes activos de los convertidores.
- Diferentes estructuras de los convertidores.
- Aplicaciones generales.

TEMA 2. Convertidores DC/DC – "Choppers" o Pulsadores.

- Asociación de una fuente de energía y de una carga alimentada en continuo por intermedio de un interruptor unidireccional.
- Propiedades sobre los "choppers" elementales de unión directa, entre fuente y carga y su esquema de principio: reductor, elevador y reductor-elevador. Relaciones fundamentales de tensión y corriente: entre en el lado fuente y el lado carga.

Fecha Emisión:			Período Vigente:	Ultimo Período:	
Enero 2003			2^{da}	Mayo/1994	
Profesor:	Jefe D	pto.:	Director:	Aprob. Cons. Escuela:	Aprob. Cons. Facul.:
Carmen Pahmer	Celso	Fortoul	Eugenio Tremamunno	Mayo/1994	Mayo/1994

FACULTAI	ACULTAD: ESCUELA:			DEPARTAMENTO:		
Ingeni	ería	Ingeniería Elé	ctrica	Potenc	ia	
ASIGNATU	RA:	CÓDIGO:	PAG.: 3			
	Electrór	nica de Potencia II		2229	DE: 5	
REQUISITO	UNIDADES:					
	Electrón	ica de Potencia I (22	219) + 150 Unidades		4	
		НО	RAS			
					TOTALES DE	
TEORÍA	PRÁCTICA	TRAB. SUPERV.	LABORATORIO	SEMINARIO	ESTUDIO	
3	1					

- "Chopper" en paralelo o "polifasicos". Análisis de funcionamiento en conducción contínua
- Propiedades sobre los "choppers" elementales a acumulación capacitiva e inductiva y su esquema de principio. Análisis de funcionamiento en conducción contínua. Características en carga del convertidor.
- Propiedades sobre los "choppers" reversibles elementales: utilizando dos interruptores en serie, utilizando dos interruptores funcionando alternativamente y el "chopper" cuatro cuadrantes.
- Aplicación en tracción. Simulación del "chopper trifásico", en tres regímenes de trabajo, según el ciclo de carga. Análisis de funcionamiento con la ayuda de la simulación.

TEMA 3. Convertidores DC/AC- Inversores

- Concepto básico de inversores, modo conmutación.
- Principio fundamentales de construcción de las estructuras. Montaje elemental en puente. Tipos de inversores: de tensión y de corriente. Esquemas de principio. Aproximación del primer armónico. Clasificación según su utilización
- Los inversores de tensión: a comando simétrico, de tres estados, y a modulación de ancho de pulso. Esquemas de conmutación con la modulación de ancho de pulso y tensión de control sinusoidal: conceptos de modulación de amplitud y de frecuencia, espectro armónico de la tensión de salida.
- Inversor trifásico de tensión. Formas de onda de tensión y corriente. Esquema de principio de un inversor industrial según ley de regulación: relación de tensión y frecuencia constante.
- Los inversores de corriente. Inversores de tiristores de mediana frecuencia. Aplicación en horno de inducción. Inversores para alimentación de motores de frecuencia variable.

C- PROGRAMA DE LABORATORIO

Esta asignatura no aplica laboratorio.

D- REQUISITOS

Haber aprobado las asignaturas:

- Electrónica de Potencia I + 150 unidades

Fecha Emisión:		Nro. Emisión:		Período Vigente:	Ultimo Período:
Enero 2003			2^{da}	Mayo/1994	
Profesor:	Jefe D	pto.:	Director:	Aprob. Cons. Escuela:	Aprob. Cons. Facul.:
Carmen Pahmer	Celso	Fortoul	Eugenio Tremamunno	Mayo/1994	Mayo/1994

FACULTAI	FACULTAD: ESCUELA:				NTO:
Ingeni	ería	Ingeniería Elé	ctrica	Potenc	ia
ASIGNATU	RA:	CÓDIGO:	PAG.: 4		
	Electrór	nica de Potencia II		2229	DE: 5
REQUISITO	UNIDADES:				
	Electrón	ica de Potencia I (22	219) + 150 Unidades		4
		НО	RAS		
					TOTALES DE
TEORÍA	PRÁCTICA	TRAB. SUPERV.	LABORATORIO	SEMINARIO	ESTUDIO
3	1				

E- PROGRAMACIÓN CRONOLÓGICA

El tiempo total destinado a esta asignatura se distribuirá de la siguiente manera:

TEOI	RÍA	PRACTICA		
TEMA	HORAS	TEMA	HORAS	
1	02	1	02	
2	20	2	10	
3	20	3	08	
TOTALES:	42		20	

F- HORAS DE CONTACTO

La asignatura comprende:

- 42 horas de teoría.
- 20 horas de práctica.
- 6 horas de evaluación.

Lo que permite una distribución promedio semanal de:

- 3 horas de teoría
- 1 hora de práctica.

G- PLAN DE EVALUACIÓN

La calificación del alumno se obtendrá de la aplicación de los siguientes instrumentos:

TEORIA

Instrumento	Contenido A Evaluar	Valor Porcentual
Examen parcial (1 ^{ro})	Tema 1 y Tema 2	30%
Examen parcial (2 ^{do})	Tema 3	30%
Quices, Tareas e Int. en clases	Tema en tratamiento	15%
Miniproyecto	Contenido global	25%

TOTAL: 100%

Fecha Emisión:			Período Vigente:	Ultimo Período:	
Enero 2003			2^{da}	Mayo/1994	
Profesor:	Jefe D	pto.:	Director:	Aprob. Cons. Escuela:	Aprob. Cons. Facul.:
Carmen Pahmer	Celso	Fortoul	Eugenio Tremamunno	Mayo/1994	Mayo/1994

FACULTAI	LTAD: ESCUELA: DEPARTAMEN			NTO:			
Ingeni	Ingeniería Ingeniería Eléctrica Pote				ia		
ASIGNATU	RA:	CÓDIGO:	PAG.: 5				
	Electrór	nica de Potencia II		2229	DE: 5		
REQUISITO	UNIDADES:						
	Electrónica de Potencia I (2219) + 150 Unidades						
	HORAS						
					TOTALES DE		
TEORÍA	PRÁCTICA	TRAB. SUPERV.	LABORATORIO	SEMINARIO	ESTUDIO		
3	1						

H- BIBLIOGRAFÍA

- J.P. CHASSANDE Guía de Electrónica de Potencia. Parte II.- UCV.
- N. MOHAN, UNDERLAND & ROBBINS "Power electronics: converters, applications, and design" John Wiley & Sons INC. 1989.
- M. RASHID "Electrónica de Potencia" Prentice Hall, 1995.
- MALONEY - "Electrónica Industrial, Dispositivos y Sistemas" Prentice Hall International. . Prentice Hall, 1992
- S. B. DEWAN & STRAUGHEN. "Power Electronics" John Wiley & Sons INC. 1989. Prentice Hall, 1992. Semiconductor Circuits"- John Wiley & Sons, Inc. 1985.

Fecha Emisión:			isión:	Período Vigente:	Ultimo Período:
Enero 2003			2^{da}	Mayo/1994	
Profesor:	Jefe D	pto.:	Director:	Aprob. Cons. Escuela:	Aprob. Cons. Facul.:
Carmen Pahmer	Celso	Fortoul	Eugenio Tremamunno	Mayo/1994	Mayo/1994